Skip to contents

Performs structural topic modeling on prepared text data and returns topic proportions and top documents for each topic.

Usage

sniff_groups_stm_run(groups_stm_prepare, k_topics = 12, n_top_documents = 50)

Arguments

groups_stm_prepare

A prepared STM object from sniff_groups_stm_prepare()

k_topics

Number of topics to model (default: 12)

n_top_documents

Number of top documents to each topic (default: 50)

Value

A list containing:

  • topic_proportion2: Data frame with topic proportions and top terms

  • tab_top_documents: Data frame of top documents for each topic

Details

This function:

  • Fits an STM model with specified number of topics

  • Identifies top terms for each topic

  • Calculates topic proportions

  • Identifies top documents for each topic

Examples

if (FALSE) { # \dontrun{
# Prepare data first
stm_data <- sniff_groups_stm_prepare(network_data)

# Run topic modeling
stm_results <- sniff_groups_stm_run(stm_data, k_topics = 15)

# Access results
stm_results$topic_proportion2  # Topic proportions and terms
stm_results$tab_top_documents  # Top documents per topic
} # }